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1. Introduction

It is difficult to overestimate the relevance of the Kaluza-Klein programme of unification in

higher dimensions. In this beautiful programme, higher dimensions are an input however,

and the 4-dimensional theory has to be recovered. We here reverse the logic and see how

a 4-dimensional gauge theory dynamically develops higher dimensions. The very concept

of dimension therefore gets an extra, richer dynamical perspective. For pioneering work

in that context see [1]. Furthermore, the Kaluza-Klein programme can now be pursued

within the framework of a 4-dimensional field theory, which dynamically develops higher

dimensions.

We present in this paper a simple field-theoretical model which realizes that idea. It

is defined as a renormalizable SU(N ) gauge theory on 4-dimensional Minkowski space M 4,

containing 3 scalars in the adjoint of SU(N ) that transform as vectors under an additional

global SO(3) symmetry with the most general renormalizable potential. We then show that

the model dynamically develops fuzzy extra dimensions, more precisely a fuzzy sphere S 2
N .

The appropriate interpretation is therefore as gauge theory on M 4 × S2
N . The low-energy

effective action is that of a 4-dimensional gauge theory on M 4, whose gauge group and

field content is dynamically determined by compactification and dimensional reduction on
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the internal sphere S2
N . An interesting and quite rich pattern of spontaneous symmetry

breaking appears, breaking the original SU(N ) gauge symmetry down to much smaller and

potentially quite interesting low-energy gauge groups. In particular, we find explicitly the

tower of massive Kaluza-Klein states, which justifies the interpretation as a compactified

higher-dimensional gauge theory. Nevertheless, the model is renormalizable.

A different mechanism of dynamically generating extra dimensions has been proposed

some years ago in [1], known under the name of “deconstruction”. In this context, renor-

malizable 4-dimensional asymptotically free gauge theories were considered with suitable

Moose- or Quiver-type arrays of gauge groups and couplings, which develop a “lattice-like”

fifth dimension. This idea attracted considerable interest. Our model is quite different,

and very simple: The SU(N ) gauge theory with 3 scalars φa in the adjoint and a global

SO(3) symmetry is shown to develop fuzzy extra dimensions through a symmetry breaking

mechanism.

Let us discuss some of the features of our model in more detail. The effective ge-

ometry, the symmetry breaking pattern and the low-energy gauge group are determined

dynamically in terms of a few free parameters of the potential. We discuss in detail the two

simplest possible vacua with gauge groups SU(n) and SU(n1) × SU(n2) × U(1). We find

explicitly the tower of massive Kaluza-Klein modes corresponding to the effective geome-

try. The mass scale of these massive gauge bosons is determined by the size of the extra

dimensions, which in turn depends on some logarithmically running coupling constants. In

the case of the SU(n1) × SU(n2) × U(1) vacuum, we identify in particular massive gauge

fields in the bifundamental, similar as in GUT models with an adjoint Higgs. Moreover,

we also identify a candidate for a further symmetry breaking mechanism, which may lead

to a low-energy content of the theory close to the standard model.

There is no problem in principle to add fermions to our model. In particular, we point

out that in the vacua with low-energy gauge group SU(n1) × SU(n2) × U(1), the extra-

dimensional sphere always carries a magnetic flux with nonzero monopole number. This

is very interesting in the context of fermions, since internal fluxes naturally lead to chiral

massless fermions. However, this is a delicate issue and will be discussed in a forthcoming

paper.

Perhaps the most remarkable aspect of our model is that the geometric interpretation

and the corresponding low-energy degrees of freedom depend in a nontrivial way on the

parameters of the model, which are running under the RG group. Therefore the massless

degrees of freedom and their geometrical interpretation depend on the energy scale. In

particular, the low-energy gauge group generically turns out to be SU(n1)×SU(n2)×U(1)

or SU(n), while gauge groups which are products of more than two simple components

(apart from U(1)) do not seem to occur in this model. Moreover, the values of n1 and n2

are determined dynamically, and may well be small such as 3 and 2. A full analysis of the

hierarchy of all possible vacua and their symmetry breaking pattern is not trivial however,

and will not be attempted in this paper. Here we restrict ourselves to establish the basic

mechanisms and features of the model, and discuss in section 3 the two simplest cases

(that we name “type 1” and “type 2” vacuum) in some detail. A more detailed analysis

(in particular for the “type 3 vacuum”) is left for future work.
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The idea to use fuzzy spaces for the extra dimensions is certainly not new. This work

was motivated by a fuzzy coset space dimensional reduction (CSDR) scheme considered

recently in [2 – 4], combined with lessons from the matrix-model approach to gauge theory

on the fuzzy sphere [5, 6]. This leads in particular to a dynamical mechanism of determining

the vacuum, SSB patterns and background fluxes. A somewhat similar model has been

studied recently in [7, 8], which realizes deconstruction and a “twisted” compactification of

an extra fuzzy sphere based on a supersymmetric gauge theory. Our model is different and

does not require supersymmetry, leading to a much richer pattern of symmetry breaking

and effective geometry. For other relevant work see e.g. [9].

The dynamical formation of fuzzy spaces found here is also related to recent work

studying the emergence of stable submanifolds in modified IIB matrix models. In particu-

lar, previous studies based on actions for fuzzy gauge theory different from ours generically

only gave results corresponding to U(1) or U(∞) gauge groups, see e.g. [10 – 12] and refer-

ences therein. The dynamical generation of a nontrivial index on noncommutative spaces

has also been observed in [13, 14] for different models.

Our mechanism may also be very interesting in the context of the recent observa-

tion [15] that extra dimensions are very desirable for the application of noncommutative

field theory to particle physics. Other related recent work discussing the implications of

the higher-dimensional point of view on symmetry breaking and Higgs masses can be found

in [16 – 19]. These issues could now be discussed within a renormalizable framework.

2. The 4-dimensional action

We start with a SU(N ) gauge theory on 4-dimensional Minkowski space M 4 with coordi-

nates yµ, µ = 0, 1, 2, 3. The action under consideration is

SYM =

∫
d4y Tr

(
1

4g2
F †µνFµν + (Dµφa)

†Dµφa

)
− V (φ) (2.1)

where Aµ are su(N )-valued gauge fields, Dµ = ∂µ + [Aµ, .], and

φa = −φ†a , a = 1, 2, 3 (2.2)

are 3 antihermitian scalars in the adjoint of SU(N ),

φa → U †φaU (2.3)

where U = U(y) ∈ SU(N ). Furthermore, the φa transform as vectors of an additional global

SO(3) symmetry. The potential V (φ) is taken to be the most general renormalizable action

invariant under the above symmetries, which is

V (φ) = Tr (g1φaφaφbφb + g2φaφbφaφb − g3εabcφaφbφc + g4φaφa)

+
g5

N Tr(φaφa)Tr(φbφb) +
g6

N Tr(φaφb)Tr(φaφb) + g7. (2.4)

This may not look very transparent at first sight, however it can be written in a very

intuitive way. First, we make the scalars dimensionless by rescaling

φ′a = R φa, (2.5)
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where R has dimension of length; we will usually suppress R since it can immediately be

reinserted, and drop the prime from now on. Now observe that for a suitable choice of R,

R =
2g2

g3
, (2.6)

the potential can be rewritten as

V (φ) = Tr

(
a2(φaφa + b̃ 1l)2 + c+

1

g̃2
F †abFab

)
+

h

N gabgab (2.7)

for suitable constants a, b, c, g̃, h, where

Fab = [φa, φb]− εabcφc = εabcFc,

b̃ = b+
d

N Tr(φaφa),

gab = Tr(φaφb). (2.8)

We will omit c from now. The potential is clearly positive definite provided

a2 = g1 + g2 > 0,
2

g̃2
= −g2 > 0, h ≥ 0, (2.9)

which we assume from now on. Here b̃ = b̃(y) is a scalar, gab = gab(y) is a symmetric tensor

under the global SO(3), and Fab = Fab(y) is a su(N )-valued antisymmetric tensor field

which will be interpreted as field strength in some dynamically generated extra dimensions

below. In this form, V (φ) looks like the action of Yang-Mills gauge theory on a fuzzy sphere

in the matrix formulation [5, 6, 20, 21]. The presence of the first term a2(φaφa + b̃)2 might

seem strange at first, however we should not simply omit it since it would be reintroduced by

renormalization. In fact it is necessary for the interpretation as YM action, and we will see

that it is very welcome on physical grounds since it dynamically determines and stabilizes

a vacuum, which can be interpreted as extra-dimensional fuzzy sphere. In particular, it

removes unwanted flat directions.

Let us briefly comment on the RG flow of the various constants. Without attempting

any precise computations here, we can see by looking at the potential (2.4) that g4 will be

quadratically divergent at one loop, while g1 and g2 are logarithmically divergent. More-

over, the only diagrams contributing to the coefficients g5, g6 of the “nonlocal” terms are

nonplanar, and thus logarithmically divergent but suppressed by 1
N compared to the other

(planar) diagrams. This justifies the explicit factors 1
N in (2.4) and (2.8). Finally, the only

one-loop diagram contributing to g3 is also logarithmically divergent. In terms of the con-

stants in the potential (2.7), this implies that R, a, g̃, d and h are running logarithmically

under the RG flux, while b and therefore b̃ is running quadratically. The gauge coupling g

is of course logarithmically divergent and asymptotically free.

A full analysis of the RG flow of these parameters is complicated by the fact that the

vacuum and the number of massive resp. massless degrees of freedom depends sensitively

on the values of these parameters, as will be discussed below. This indicates that the

RG flow of this model will have a rich and nontrivial structure, with different effective

description at different energy scales.
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2.1 The minimum of the potential

Let us try to determine the minimum of the potential (2.7). This turns out to be a rather

nontrivial task, and the answer depends crucially on the parameters in the potential.

For suitable values of the parameters in the potential, we can immediately write down

the vacuum. Assume for simplicity h = 0 in (2.7) . Since V (φ) ≥ 0, the global minimum

of the potential is certainly achieved if

Fab = [φa, φb]− εabcφc = 0, −φaφa = b̃, (2.10)

because then V (φ) = 0. This implies that φa is a representation of SU(2), with prescribed

Casimir1 b̃. These equations may or may not have a solution, depending on the value of

b̃. Assume first that b̃ coincides with the quadratic Casimir of a finite-dimensional irrep of

SU(2),

b̃ = C2(N) =
1

4
(N2 − 1) (2.11)

for some N ∈ N. If furthermore the dimension N of the matrices φa can be written as

N = Nn, (2.12)

then clearly the solution of (2.10) is given by

φa = X(N)
a ⊗ 1ln (2.13)

up to a gauge transformation, where X
(N)
a denote the generator of the N -dimensional irrep

of SU(2). This can be viewed as a special case of (2.15) below, consisting of n copies of the

irrep (N) of SU(2).

For generic b̃, the equations (2.10) cannot be satisfied for finite-dimensional matrices

φa. The exact vacuum (which certainly exists since the potential is positive definite) can

in principle be found by solving the “vacuum equation” δV
δφa

= 0,

a2{φa, φ · φ+ b̃+
d

N Tr(φ · φ+ b̃)}+
2h

N gabφb +
1

g̃2
(2[Fab, φb] + Fbcεabc) = 0 (2.14)

where φ · φ = φaφa. We note that all solutions under consideration will imply gab =
1
3δabTr(φ · φ), simplifying this expression.

The general solution of (2.14) is not known. However, it is easy to write down a large

class of solutions: any decomposition of N = n1N1 + · · ·+ nhNh into irreps of SU(2) with

multiplicities ni leads to a block-diagonal solution

φa = diag
(
α1 X

(N1)
a , . . . , αkX

(Nk)
a

)
(2.15)

of the vacuum equations (2.14), where αi are suitable constants which will be determined

below. There are hence several possibilities for the true vacuum, i.e. the global minimum

of the potential. Since the general solution is not known, we proceed by first determining

the solution of the form (2.15) with minimal potential, and then discuss a possible solution

of a different type (“type 3 vacuum”).

1note that −φ · φ = φ† · φ > 0 since the fields are antihermitian
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Type 1 vacuum. It is clear that the solution with minimal potential should satisfy

(2.10) at least approximately. It is therefore plausible that the solution (2.15) with minimal

potential contains only representations whose Casimirs are close to b̃. In particular, let N

be the dimension of the irrep whose Casimir C2(N) ≈ b̃ is closest to b̃. If furthermore the

dimensions match as N = Nn, we expect that the vacuum is given by n copies of the irrep

(N), which can be written as

φa = αX(N)
a ⊗ 1ln. (2.16)

This is a slight generalization of (2.13), with α being determined through the vacuum

equations (2.14),

a2(α2C2(N)− b̃)(1 + d) +
h

3
α2C2(N)− 1

g̃2
(α− 1)(1 − 2α) = 0 (2.17)

A vacuum of the form (2.16) will be denoted as “type 1 vacuum”. As we will explain in de-

tail, it has a natural interpretation in terms of a dynamically generated extra-dimensional

fuzzy sphere S2
N , by interpreting X

(N)
a as generator of a fuzzy sphere (A.1). Furthermore,

we will show in section 3.1 that this type 1 vacuum (2.16) leads to spontaneous symme-

try breaking, with low-energy (unbroken) gauge group SU(n). The low-energy sector of

the model can then be understood as compactification and dimensional reduction on this

internal fuzzy sphere.

Let us discuss equation (2.17) in more detail. It can of course be solved exactly, but

an expansion around α = 1 is more illuminating. To simplify the analysis we assume

d = h = 0 (2.18)

from now on, and assume furthermore that

a2 ≈ 1

g̃2
(2.19)

have the same order of magnitude. Defining the real number Ñ by

b̃ =
1

4
(Ñ2 − 1), (2.20)

one finds

α = 1− m

N
+
m(m+ 1)

N2
+O(

1

N3
) where m = N − Ñ , (2.21)

assuming N to be large and m small. Notice that a does not enter to leading order.

This can be understood by noting that the first term in (2.17) is dominating under these

assumptions, which determines α to be (2.21) to leading order. The potential V (φ) is then

dominated by the term
1

g̃2
F †abFab =

1

2g̃2
m2 1l + O(

1

N
), (2.22)

while (φaφa + b̃)2 = O( 1
N2 ). There is a deeper reason for this simple result: If Ñ ∈ N, then

the solution (2.16) can be interpreted as a fuzzy sphere S2
Ñ

carrying a magnetic monopole

of strength m, as shown explicitly in [5]; see also [22, 23]. Then (2.22) is indeed the action

of the monopole field strength.
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Type 2 vacuum. It is now easy to see that for suitable parameters, the vacuum will

indeed consist of several distinct blocks. This will typically be the case if N is not divisible

by the dimension of the irrep whose Casimir is closest to b̃.

Consider again a solution (2.15) with ni blocks of size Ni = Ñ +mi, assuming that Ñ

is large and mi
Ñ
¿ 1. Generalizing (2.22), the action is then given by

V (φ) = Tr
( 1

2g̃2

∑

i

nim
2
i 1lNi +O(

1

Ni
)
)
≈ 1

2g̃2

N
k

∑

i

nim
2
i (2.23)

where k =
∑
ni is the total number of irreps, and the solution can be interpreted in terms

of “instantons” (nonabelian monopoles) on the internal fuzzy sphere [5]. Hence in order

to determine the solution of type (2.15) with minimal action, we simply have to minimize∑
i nim

2
i , where the mi ∈ Z− Ñ satisfy the constraint

∑
nimi = N − kÑ .

It is now easy to see that as long as the approximations used in (2.23) are valid, the

vacuum is given by a partition consisting of blocks with no more than 2 distinct sizes

N1, N2 which satisfy N2 = N1 + 1. The follows from the convexity of (2.23): assume

that the vacuum is given by a configuration with 3 or more different blocks of size N1 <

N2 < . . . < Nk. Then the action (2.23) could be lowered by modifying the configuration

as follows: reduce n1 and nk by one, and add 2 blocks of size N1 + 1 and Nk − 1. This

preserves the overall dimension, and it is easy to check (using convexity) that the action

(2.23) becomes smaller. This argument can be applied as long as there are 3 or more

different blocks, or 2 blocks with |N2 −N1| ≥ 2. Therefore if N is large, the solution with

minimal potential among all possible partitions (2.15) is given either by a type 1 vacuum,

or takes the form

φa =

(
α1 X

(N1)
a ⊗ 1ln1 0

0 α2 X
(N2)
a ⊗ 1ln2

)
, (2.24)

where the integers N1, N2 satisfy

N = N1n1 +N2n2, N2 = N1 + 1. (2.25)

A vacuum of the form (2.24) will be denoted as “type 2 vacuum”, and is the generic

case. In particular, the integers n1 and n2 are determined dynamically. This conclusion

might be altered for nonzero d, h or by a violation of the approximations used in (2.23).

We will show in section 3.2 that this type of vacuum leads to a low-energy (unbroken)

gauge group SU(n1) × SU(n2) × U(1), and the low-energy sector can be interpreted as

dimensional reduction of a higher-dimensional gauge theory on an internal fuzzy sphere,

with features similar to a GUT model with SSB SU(n1 + n2) → SU(n1)× SU(n2) × U(1)

via an adjoint Higgs. Furthermore, since the vacuum (2.24) can be interpreted as a fuzzy

sphere with nontrivial magnetic flux [5], one can expect to obtain massless chiral fermions

in the low-energy action. This will be worked out in detail in a forthcoming publication.

In particular, it is interesting to see that gauge groups which are products of more

than two simple components (apart from U(1)) do not occur in this model.
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Type 3 vacuum. Finally, it could be that the vacuum is of a type different from (2.15),

e.g. with off-diagonal corrections such as

φa =

(
α1 X

(N1)
a ⊗ 1ln1 ϕa

−ϕ†a α2 X
(N2)
a ⊗ 1ln2

)
(2.26)

for some small ϕa. We will indeed provide evidence for the existence of such a vacuum

below, and argue that it leads to a further SSB. This might play a role similar to low-

energy (“electroweak”) symmetry breaking, which will be discussed in more detail below.

In particular, it is interesting to note that the ϕa will no longer be in the adjoint of the

low-energy gauge group. A possible way to obtain a SSB scenario close to the standard

model is discussed in section 3.4.

2.2 Emergence of extra dimensions and the fuzzy sphere

Before discussing these vacua and the corresponding symmetry breaking in more detail,

we want to explain the geometrical interpretation, assuming first that the vacuum has the

form (2.16). The X
(N)
a are then interpreted as coordinate functions (generators) of a fuzzy

sphere S2
N , and the “scalar” action

Sφ = TrV (φ) = Tr
(
a2(φaφa + b̃)2 +

1

g̃2
F †abFab

)
(2.27)

for N × N matrices φa is precisely the action for a U(n) Yang-Mills theory on S2
N with

coupling g̃, as shown in [5] and reviewed in section B. In fact, the “unusual” term (φaφa+b̃)
2

is essential for this interpretation, since it stabilizes the vacuum φa = X
(N)
a and gives

a large mass to the extra “radial” scalar field which otherwise arises. The fluctuations

of φa = X
(N)
a + Aa then provide the components Aa of a higher-dimensional gauge field

AM = (Aµ, Aa), and the action (2.1) can be interpreted as YM theory on the 6-dimensional

space M 4 × S2
N , with gauge group depending on the particular vacuum. Note that e.g.

for the type 1 vacuum, the local gauge transformations U(N ) can indeed be interpreted as

local U(n) gauge transformations on M 4 × S2
N .

In other words, the scalar degrees of freedom φa conspire to form a fuzzy space in extra

dimensions. We therefore interpret the vacuum (2.16) as describing dynamically generated

extra dimensions in the form of a fuzzy sphere S2
N , with an induced Yang-Mills action on

S2
N . This geometrical interpretation will be fully justified in section 3 by working out the

spectrum of Kaluza-Klein modes. The effective low-energy theory is then given by the

zero modes on S2
N , which is analogous to the models considered in [2]. However, in the

present approach we have a clear dynamical selection of the geometry due to the first term

in (2.27).

It is interesting to recall here the running of the coupling constants under the RG as

discussed above. The logarithmic running of R implies that the scale of the internal spheres

is only mildly affected by the RG flow. However, b̃ is running essentially quadratically, hence

is generically large. This is quite welcome here: starting with some large N , b̃ ≈ C2(Ñ )

must indeed be large in order to lead to the geometric interpretation discussed above.

Hence the problems of naturalness or fine-tuning appear to be rather mild here.
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3. Kaluza-Klein modes, dimensional reduction, and symmetry breaking

We now study the model (2.1) in more detail. Let us emphasize again that this is a

4-dimensional renormalizable gauge theory, and there is no fuzzy sphere or any other

extra-dimensional structure to start with. We have already discussed possible vacua of the

potential (2.27), depending on the parameters a, b̃, g̃ and N . This is a nontrivial problem,

the full solution of which is beyond the scope of this paper. We restrict ourselves here

to the simplest types of vacua discussed in section 2.1, and derive some of the properties

of the resulting low-energy models, such as the corresponding low-energy gauge groups

and the excitation spectrum. In particular, we exhibit the tower of Kaluza-Klein modes

in the different cases. This turns out to be consistent with an interpretation in terms of

compactification on an internal sphere, demonstrating without a doubt the emergence of

fuzzy internal dimensions. In particular, the scalar fields φa become gauge fields on the

fuzzy sphere.

3.1 Type 1 vacuum and SU(n) gauge group

Let us start with the simplest case, assuming that the vacuum has the form (2.16). We

want to determine the spectrum and the representation content of the gauge field Aµ. The

structure of φa = αX
(N)
a ⊗1ln suggests to consider the subgroups SU(N)×SU(n) of SU(N ),

where

K := SU(n) (3.1)

is the commutant of φa i.e. the maximal subgroup of SU(N ) which commutes with all

φa, a = 1, 2, 3; this follows from Schur’s Lemma. K will turn out to be the effective

(low-energy) unbroken 4-dimensional gauge group.

We could now proceed in a standard way arguing that SU(N ) is spontaneously broken

to K since φa takes a VEV as in (2.16), and elaborate the Higgs mechanism. This is

essentially what will be done below, however in a language which is very close to the picture

of compactification and KK modes on a sphere in extra dimensions. This is appropriate

here, and leads to a description of the low-energy physics of this model as a dimensionally

reduced SU(n) gauge theory.

Kaluza-Klein expansion on S2
N . Interpreting the X

(N)
a as generators of the fuzzy

sphere S2
N , we can decompose the full 4-dimensional su(N )-valued gauge fields Aµ into

spherical harmonics Y lm(x) on the fuzzy sphere S2
N with coordinates xa:

Aµ =
∑

0≤l≤N,|m|≤l
Y lm(x)⊗Aµ,lm(y) = Aµ(x, y). (3.2)

The Y lm are by definition irreps under the SU(2) rotations on S2
N , and form a basis of

Hermitian N × N matrices; for more details see section A. The Aµ,lm(y) turn out to

be u(n)-valued gauge and vector fields on M 4. Using this expansion, we can interpret

Aµ(x, y) as u(n)-valued functions on M 4×S2
N , expanded into the Kaluza-Klein modes (i.e.

harmonics) of S2
N .
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The scalar fields φa with potential (2.27) and vacuum (2.16) should be interpreted as

“covariant coordinates” on S2
N which describe U(n) Yang-Mills theory on S2

N . This means

that the fluctuations Aa of these covariant coordinates

φa = αX(N)
a ⊗ 1ln +Aa (3.3)

should be interpreted as gauge fields on the fuzzy sphere, see (B.4). They can be expanded

similarly as

Aa =
∑

l,m

Y lm(x)⊗Aa,lm(y) = Aa(x, y), (3.4)

interpreted as functions (or 1-form) on M 4 × S2
N taking values in u(n). One can then

interpret AM (x, y) = (Aµ(x, y), Aa(x, y)) as u(n)-valued gauge or vector fields on M 4×S2
N .

Given this expansion into KK modes, we will show that only Aµ,00(y) (i.e. the dimen-

sionally reduced gauge field) becomes a massless su(n)-valued2 gauge field in 4D, while

all other modes Aµ,lm(y) with l ≥ 1 constitute a tower of Kaluza-Klein modes with large

mass gap, and decouple for low energies. The existence of these KK modes firmly estab-

lishes our claim that the model develops dynamically extra dimensions in the form of S 2
N .

This geometric interpretation is hence forced upon us, provided the vacuum has the form

(2.16). The scalar fields Aa(x, y) will be analyzed in a similar way below, and provide

no additional massless degrees of freedom in 4 dimensions. More complicated vacua will

have a similar interpretation. Remarkably, our model is fully renormalizable in spite of its

higher-dimensional character, in contrast to the commutative case; see also [3].

Computation of the KK masses. To justify these claims, let us compute the masses

of the KK modes (3.2). They are induced by the covariant derivatives
∫
Tr(Dµφa)

2 in

(2.1),

∫
Tr(Dµφa)

†Dµφa =

∫
Tr(∂µφ

†
a∂µφa + 2(∂µφ

†
a)[Aµ, φa] + [Aµ, φa]

†[Aµ, φa]). (3.5)

The most general scalar field configuration can be written as

φa(y) = α(y)X(N)
a ⊗ 1ln +Aa(x, y) (3.6)

where Aa(x, y) is interpreted as gauge field on the fuzzy sphere S2
N for each y ∈ M 4.

We allow here for a y–dependent α(y) (which could have been absorbed in Aa(x, y)),

because it is naturally interpreted as the Higgs field responsible for the symmetry breaking

SU(N ) → SU(n). As usual, the last term in (3.5) leads to the mass terms for the gauge

fields Aµ in the vacuum φa(y) = αX
(N)
a ⊗1ln, provided the mixed term which is linear in Aµ

vanishes in a suitable gauge. This is usually achieved by going to the unitary gauge. In the

present case this is complicated by the fact that we have 3 scalars in the adjoint, and there

is no obvious definition of the unitary gauge; in fact, there are are too many scalar degrees

of freedom as to gauge away that term completely. However, we can choose a gauge where

2note that Aµ,00(y) is traceless, while Aµ,lm(y) is not in general
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all quadratic contributions of that term vanish, leaving only cubic interaction terms. To

see this, we insert (3.6) into the term (∂µφ
†
a)[Aµ, φa] in (3.5), which gives

∫
TrAµ[φa, ∂µφ

†
a] =

∫
TrAµ

(
α[Xa, ∂µAa(x, y)] + [Aa(x, y), ∂µαXa] + [Aa(x, y), ∂µAa(x, y)]

)
.

Now we partially fix the gauge by imposing the “internal” Lorentz gauge [Xa, Aa] = 0 at

each point y. This is always possible3, and the above simplifies as

∫
TrAµ[φa, ∂µφ

†
a] =

∫
TrAµ[Aa(x, y), ∂µAa(x, y)] =: Sint. (3.7)

This contains only cubic interaction terms, which are irrelevant for the computation of

the masses. We can therefore proceed by setting φa(y) = αX
(N)
a ⊗ 1ln and inserting

the expansion (3.2) of Aµ into the last term of (3.5). Noting that i[Xa, Aµ] = JaAµ =∑
l,mAµ,lm(y) JaY

lm is simply the action of SU(2) on the fuzzy sphere, it follows that

Tr[Xa, Aµ][Xa, Aµ] is the quadratic Casimir on the modes of Aµ which are orthogonal, and

we obtain
∫
Tr(Dµφa)

†Dµφa =

∫
Tr(∂µφ

†
a∂µφa +

∑

l,m

α2 l(l + 1)Aµ,lm(y)†Aµ,lm(y)) + Sint. (3.8)

Therefore the 4-dimensional u(n) gauge fields Aµ,lm(y) acquire a mass

m2
l =

α2g2

R2
l(l + 1) (3.9)

reinserting the parameter R (2.6) which has dimension length. This is as expected for

higher KK modes, and determines the radius of the internal S2 to be

rS2 =
α

g
R (3.10)

where α ≈ 1 according to (2.21). In particular, only Aµ(y) ≡ Aµ,00(y) survives as a

massless 4-dimensional su(n) gauge field. The low-energy effective action for the gauge

sector is then given by

SLEA =

∫
d4y

1

4g2
Trn F

†
µνFµν , (3.11)

where Fµν is the field strength of the low-energy su(n) gauge fields, dropping all other KK

modes whose mass scale is set by 1
R . For n = 1, there is no massless gauge field. However

we would find a massless U(1) gauge field if we start with a U(N ) gauge theory rather than

SU(N ).

3even though this gauge is commonly used in the literature on the fuzzy sphere, a proof of existence has

apparently not been given. It can be proved by extremizing the real function Tr(Xaφa) on a given gauge

orbit, which is compact; the e.o.m. then implies [Xa, φa] = 0.
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Scalar sector. We now expand the most general scalar fields φa into modes, singling out

the coefficient of the “radial mode” as

φa(y) = X(N)
a ⊗ (α1ln + ϕ(y)) +

∑

k

Aa,k(x)⊗ ϕk(y). (3.12)

Here Aa,k(x) stands for a suitable basis labeled by k of fluctuation modes of gauge fields

on S2
N , and ϕ(y) resp. ϕk(y) are u(n)-valued. We expect that all fluctuation modes in

the expansion (3.12) have a large mass gap of the order of the KK scale, which is indeed

the case as shown in detail in section C. Therefore we can drop all these modes for the

low-energy sector. However, the field ϕ(y) plays a somewhat special role. It corresponds

to fluctuations of the radius of the internal fuzzy sphere, which is the order parameter

responsible for the SSB SU(N ) → SU(n), and assumes the value α1ln in (3.12). ϕ(y) is

therefore the Higgs which acquires a positive mass term in the broken phase, which can be

obtained by inserting φa(y) = X
(N)
a ⊗ (α1ln + ϕ(y)) into V (φ). This mass is dominated by

the first term in (2.7) (assuming a2 ≈ 1
g̃2 ), of order

V (ϕ(y)) ≈ N
(
a2C2(N)2ϕ(y)2 +O(ϕ3)

)
(3.13)

for large N and N . The full potential for ϕ is of course quartic.

We conclude that our model indeed behaves like a U(n) gauge theory on M 4×S2
N , with

the expected tower of KK modes on the fuzzy sphere S2
N of radius (3.10). The low-energy

effective action is given by the lowest KK mode, which is

SLEA =

∫
d4y Trn

(
1

4g2
F †µνFµν +Dµϕ(y)Dµϕ(y)NC2(N) +Na2C2(N)2ϕ(y)2

)
+ Sint

(3.14)

for the SU(n) gauge field Aµ(y) ≡ Aµ,00(y). In (3.14) we also keep the Higgs field ϕ(y),

even though it acquires a large mass

m2
ϕ =

a2

R2
C2(N) (3.15)

reinserting R.

3.2 Type 2 vacuum and SU(n1)× SU(n2)×U(1) gauge group

For different parameters in the potential, we can obtain a different vacuum, with different

low-energy gauge group. Assume now that the vacuum has the form (2.24). The structure

of φa suggests to consider the subgroups (SU(N1)× SU(n1))× (SU(N2)× SU(n2))×U(1)

of SU(N ), where

K := SU(n1)× SU(n2)×U(1) (3.16)

is the maximal subgroup of SU(N ) which commutes with all φa, a = 1, 2, 3 (this follows

from Schur’s Lemma). Here the U(1) factor is embedded as

u(1) ∼
(

1
N1n1

1lN1×n1

− 1
N2n2

1lN2×n2

)
(3.17)
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which is traceless. K will again be the effective (low-energy) 4-dimensional gauge group.

We now repeat the above analysis of the KK modes and their effective 4-dimensional

mass. First, we write

Aµ =

(
A1
µ A+

µ

A−µ A2
µ

)
(3.18)

according to (2.24), where (A+
µ )† = −A−µ . The masses of the gauge bosons are again

induced by the last term in (3.5). Consider the term [φa, Aµ] = [α1X
(N1)
a + α2X

(N2)
a , Aµ].

For the diagonal fluctuations A1,2
µ , this is simply the adjoint action of X

(N1)
a . For the off-

diagonal modes A±µ , we can get some insight by assuming first α1 = α2. Then the above

commutator is X (N1)A+
µ −A+

µX
(N2), reflecting the representation content A+

µ ∈ (N1)⊗(N2)

and A−µ ∈ (N2) ⊗ (N1). Assuming N1 −N2 = k > 0, this implies in particular that there

are no zero modes for the off-diagonal blocks, rather the lowest angular momentum is k.

They can be interpreted as being sections on a monopole bundle with charge k on S 2
N1

,

cf. [5]. The case α1 6= α2 requires a more careful analysis as indicated below. In any case,

we can again expand Aµ into harmonics,

Aµ =
∑

l,m

(
Y lm(N1)A1

µ,lm(y) Y lm(+) A+
µ,lm(y)

Y lm(−) A−µ,lm(y) Y lm(N2) A2
µ,lm(y)

)
= Aµ(x, y) (3.19)

setting Y lm(N) = 0 if l > 2N . Then the A1,2
µ,lm(y) are u(n1) resp. u(n2)-valued gauge

resp. vector fields on M 4, while A±µ,lm(y) are vector fields on M 4 which transform in the

bifundamental (n1, n2) resp. (n2, n1) of u(n1)× u(n2).

Now we can compute the masses of these fields. For the diagonal blocks this is the

same as in section 3.1, while the off-diagonal components can be handled by writing

Tr([φa, Aµ][φa, Aµ]) = 2Tr(φaAµφaAµ − φaφaAµAµ). (3.20)

This gives
∫
Tr(Dµφa)

†Dµφa=

∫
Tr
(
∂µφ

†
a∂µφa +

∑

l≥0

(m2
l,1A

1†
µ,lm(y)A1

µ,lm(y) +m2
l,2A

2†
µ,lm(y)A2

µ,lm(y))

+
∑

l≥k
2m2

l;±(A+
µ,lm(y))†A+

µ,lm(y)
)

(3.21)

similar as in (3.8), with the same gauge choice and omitting cubic interaction terms. In

particular, the diagonal modes acquire a KK mass

m2
l,i =

α2
i g

2

R2
l(l + 1) (3.22)

completely analogous to (3.9), while the off-diagonal modes acquire a mass

m2
l;± =

g2

R2

(
α1α2 l(l + 1) + (α1 − α2)(X2

2α2 −X2
1α1)

)

≈ g2

R2

(
l(l + 1) +

1

4
(m2 −m1)2 +O(

1

N )

)
(3.23)
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using (2.21) for αi ≈ 1. In particular, all masses are positive.

We conclude that the gauge fields A1,2
µ,lm(y) have massless components A1,2

µ,00(y) which

take values in su(ni) due to the KK-mode l = 0 (as long as ni > 1), while the bifundamental

fields A±µ,lm(y) have no massless components. Note that the mass scales of the diagonal

modes (3.22) and the off-diagonal modes (3.23) are essentially the same. This result is

similar to the breaking SU(n1 + n2)→ SU(n1)× SU(n2)×U(1) through an adjoint Higgs,

such as in the SU(5)→ SU(3)× SU(2)×U(1) GUT model. In that case, one also obtains

massive (“ultraheavy”) gauge fields in the bifundamental, whose mass should therefore

be identified in our scenario with the mass (3.23) of the off-diagonal massive KK modes

A±µ,lm(y). The U(1) factor (3.17) corresponds to the massless components A1,2
µ,00(y) above,

which is now present even if ni = 1. We therefore found results comparable to [24], but

within the framework of a renormalizable theory.

The appropriate interpretation of this vacuum is as a gauge theory on M 4 × S2, com-

pactified on S2 which carries a magnetic flux with monopole number |N1 − N2|. This

leads to a low-energy action with gauge group SU(n1)× SU(n2) ×U(1). The existence of

a magnetic flux is particularly interesting in the context of fermions, since internal fluxes

naturally lead to chiral massless fermions. This issue will be studied in detail elsewhere.

Repeating the analysis of fluctuations for the scalar fields is somewhat messy, and will

not be given here. However since the vacuum (2.24) is assumed to be stable, all fluctuations

in the φa will again be massive with mass presumably given by the KK scale, and can

therefore be omitted for the low-energy theory. Again, one could interpret the fluctuations

ϕ1,2(y) of the radial modes X
(N1,2)
a ⊗ (α1,2 + ϕ1,2(y)) as low-energy Higgs in analogy to

(3.12), responsible for the symmetry breaking SU(n1 + n2)→ SU(n1)× SU(n2)×U(1).

3.3 Type 3 vacuum and further symmetry breaking

Finally consider a vacuum of the form (2.26). The additional fields ϕa transform in the

bifundamental of SU(n1) × SU(n2) and lead to further SSB. Of particular interest is the

simplest case

φa =

(
α1X

(N1)
a ⊗ 1ln ϕa

−ϕ†a α2 X
(N2)
a

)
(3.24)

corresponding to a would-be gauge group SU(n)×U(1) according to section 3.2, which will

be broken further. Then ϕa =



ϕa,1

...

ϕa,n


 lives in the fundamental of SU(n) charged under

U(1), and transforms as (N1)⊗ (N2) under the SO(3) corresponding to the fuzzy sphere(s).

As discussed below, by adding a further block, one can get somewhat close to the standard

model, with ϕa being a candidate for a low-energy Higgs.

We will argue that there is indeed such a solution of the equation of motion (2.14) for

|N1 −N2| = 2. Note that since ϕa ∈ (N1)⊗ (N2) = (|N1 −N2|+ 1)⊕ . . .⊕ (N1 +N2 − 1),

it can transform as a vector under SO(3) only in that case. Hence assume N1 = N2 + 2,

and define ϕa ∈ (N1) ⊗ (N2) to be the unique component which transform as a vector in
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the adjoint. One can then show that

φaφa = −
(
α2

1 C2(N1)⊗ 1ln1 − h
N1

0

0 α2
2 C2(N2)− h

N2

)
(3.25)

where h is a normalization constant, and

εabcφbφc =

(
(α2

1 − g1

N1

h
C2(N1))X

(N1)
a (α1g1 + α2g2)ϕa

−(α1g1 + α2g2)ϕ†a (α2
2 − g2

N2

h
C2(N2))X

(N2)
a

)
(3.26)

where g1 = N1+1
2 , g2 = −N2−1

2 . This has the same form as (3.24) but with different

parameters. We now have 3 parameters α1, α2, h at our disposal, hence generically this

Ansatz will provide solutions of the e.o.m. (2.14) which amounts to 3 equations for the

independent blocks. It remains to be seen whether they are energetically favorable. This

will be studied in a future publication.

The commutant K and further symmetry breaking. To determine the low-energy

gauge group i.e. the maximal subgroup K commuting with the solution φa of type (3.24),

consider

εabcφbφc − (α1g1 + α2g2)φa =(
(α2

1 − α1(α1g1 + α2g2)− g1

N1

h
C2(N1) )X

(N1)
a 0

0 (α2
2 − α2(α1g1 + α2g2)− g2

N2

h
C2(N2))X

(N2)
a

)

(3.27)

Unless one of the two coefficients vanishes, this implies that K must commute with (3.27),

hence K =

(
K1 0

0 K2

)
is a subgroup of SU(n1)×SU(n2)×U(1); here we focus on SU(n2) =

SU(1) being trivial. Then (3.24) implies that k1ϕa = ϕak2 for ki ∈ Ki, which means that

ϕa is an eigenvector of k1 with eigenvalue k2. Using a SU(n1) rotation, we can assume

that ϕTa = (ϕa,1, 0, . . . , 0). Taking into account the requirement that K is traceless, it

follows that K ∼= K1
∼= SU(n1 − 1) ⊂ SU(n1). Therefore the gauge symmetry is broken to

SU(n1 − 1). This can be modified by adding a further block as discussed below.

3.4 Towards the standard model

Generalizing the above considerations, we can construct a vacuum which is quite close to

the standard model. Consider

N = N1n1 +N2n2 +N3, (3.28)

for n1 = 3 and n2 = 2. As discussed above, we expect a vacuum of the form

φa =



α1 X

(N1)
a ⊗ 1l3 0 0

0 α2 X
(N2)
a ⊗ 1l2 ϕa

0 −ϕ†a α3 X
(N3)
a


 (3.29)
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if b̃ ≈ C2(N1) and N1 ≈ N2 = N3 ± 2. Then the unbroken low-energy gauge group would

be

K = SU(3)×U(1)Q ×U(1)F , (3.30)

with U(1)F generated by the traceless generator

u(1)F ∼
(

1
3N1

1l3N1

− 1
D 1lD

)
(3.31)

where D = 2N2 +N3, and U(1)Q generated by the traceless generator

u(1)Q ∼




1
3N1

1l3N1

− 1
N2

(
0 0

0 1

)
1lN2

0


 . (3.32)

assuming that ϕTa = (ϕa,1, 0). This is starting to be reminiscent of the standard model, and

will be studied in greater detail elsewhere. However, we should recall that the existence of

a vacuum of this form has not been established at this point.

Relation with CSDR scheme

Let us compare the results of this paper with the CSDR construction in [2]. In that paper,

effective 4-dimensional models are constructed starting from gauge theory on M 4 × S2
N ,

by imposing CSDR constraints following the general ideas of [25 – 28]. These constraints

boiled down to choosing embeddings ωa, a = 1, 2, 3 of SU(2) ⊂ SU(N ), which determine

the unbroken gauge field as the commutant of ωa, and the low-energy (unbroken) Higgs

by ϕa ∼ ωa. This is similar to the “choice” of vacuum in the present paper, such as (2.16),

(2.24), identifying ωa with ⊕iXNi
a as in (2.15). The solutions of these constraints can be

formally identified with the zero modes Aµ,00 of the KK-tower of gauge fields (3.2), resp.

the vacuum of the scalar sector (3.12). In this sense, the possible vacua (2.15) could be

interpreted as solutions of the CSDR constraints in [2] on a given fuzzy sphere.

However, there are important differences. First, the present approach provides a clear

dynamical mechanism which chooses a unique vacuum. This depends crucially on the first

term in (2.7), that removes the degeneracy of all possible embeddings of SU(2), which have

vanishing field strength Fab. Moreover, it may provide an additional mechanism for further

symmetry breaking as discussed in section 3.3. Another difference is that the starting point

in [2] is a 6-dimensional gauge theory with some given gauge group, such as U(1). This

is not the case in present paper, where the 6-dimensional gauge group depends on the

parameters of the model.

4. Discussion

We have presented a renormalizable 4-dimensional SU(N ) gauge theory with a suitable

multiplet of scalars, which dynamically develops fuzzy extra dimensions that form a fuzzy
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sphere. The model can then be interpreted as 6-dimensional gauge theory, with gauge group

and geometry depending on the parameters in the original Lagrangian. We explicitly find

the tower of massive Kaluza-Klein modes, consistent with an interpretation as compactified

higher-dimensional gauge theory, and determine the effective compactified gauge theory.

Depending on the parameters of the model the low-energy gauge group can be SU(n), or

broken further e.g. to SU(n1) × SU(n2) × U(1), with mass scale determined by the extra

dimension.

There are many remarkable aspects of this model. First, it provides an extremely

simple and geometrical mechanism of dynamically generating extra dimensions, without

relying on subtle dynamics such as fermion condensation and particular Moose- or Quiver-

type arrays of gauge groups and couplings, such as in [1] and following work. Rather,

our model is based on a basic lesson from noncommutative gauge theory, namely that

noncommutative or fuzzy spaces can be obtained as solutions of matrix models. The

mechanism is quite generic, and does not require fine-tuning or supersymmetry. This

provides in particular a realization of the basic ideas of compactification and dimensional

reduction within the framework of renormalizable quantum field theory. Moreover, we are

essentially considering a large N gauge theory, which should allow to apply the analytical

techniques developed in this context.

One of the main features of our mechanism is that the effective properties of the model

including its geometry depend on the particular parameters of the Lagrangian, which are

subject to renormalization. In particular, the RG flow of these parameters depends on

the specific vacuum i.e. geometry, which in turn will depend on the energy scale. For

example, it could be that the model assumes a “type 3” vacuum as discussed in section 3.3

at low energies, which might be quite close to the standard model. At higher energies,

the parameter b̃ (which determines the effective gauge group and which is expected to

run quadratically under the RG flow) will change, implying a very different vacuum with

different gauge group etc. This suggests a rich and complicated dynamical hierarchy of

symmetry breaking, which remains to be elaborated.

In particular, we have shown that the low-energy gauge group is given by SU(n1) ×
SU(n2)× U(1) or SU(n), while gauge groups which are products of more than two simple

components (apart from U(1)) do not seem to occur in this model. The values of n1 and

n2 are determined dynamically. Moreover, the existence of a magnetic flux in the vacua

with non-simple gauge group is very interesting in the context of fermions, since internal

fluxes naturally lead to chiral massless fermions. This will be studied in detail elsewhere.

There is also an intriguing analogy between our toy model and string theory, in the

sense that as long as a = 0, there are a large number of possible vacua (given by all

possible partitions (2.15)) corresponding to compactifications, with no dynamical selection

mechanism to choose one from the other. Remarkably this analog of the “string vacuum

problem” is simply solved by adding a term to the action.

Finally we should point out some potential problems or shortcomings of our model.

First, we have not yet fully established the existence of the most interesting vacuum struc-

ture of type 3 such as in (3.24) or (3.29). This will be studied in a future paper. Even

a full analysis of the fluctuations and KK modes in the scalar sector for vacuum of type
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2 has not been done, but we expect no surprises here; a numerical study is currently in

progress. Finally, the use of scalar Higgs fields φa without supersymmetry may seem some-

what problematic due to the strong renormalization behavior of scalar fields. This is in

some sense consistent with the interpretation as higher-dimensional gauge theory, which

would be non-renormalizable in the classical case. Moreover, a large value of the quadrat-

ically divergent term b̃ is quite desirable here as explained in section 2.2, and does not

require particular fine-tuning.
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A. The fuzzy sphere

The fuzzy sphere [29] is a matrix approximation of the usual sphere S2. The algebra of

functions on S2 (which is spanned by the spherical harmonics) is truncated at a given

frequency and thus becomes finite dimensional. The algebra then becomes that of N ×N
matrices. More precisely, the algebra of functions on the ordinary sphere can be generated

by the coordinates of R3 modulo the relation
∑3

a=1 xaxa = r2. The fuzzy sphere S2
N is the

non-commutative manifold whose coordinate functions

xa = r
i√

C2(N)
Xa, x†a = xa (A.1)

are N × N hermitian matrices proportional to the generators of the N -dimensional rep-

resentation of SU(2). They satisfy the condition
∑3

a=1 xaxa = r2 and the commutation

relations

[Xa, Xb] = εabcXc . (A.2)

For N → ∞, one recovers the usual commutative sphere. The best way to see this is to

decompose the space of functions on S2
N into irreps under the SU(2) rotations,

S2
N
∼= (N)⊗ (N) = (1)⊕ (3) ⊕ . . . ⊕ (2N − 1)

= {Y 0,0} ⊕ . . . ⊕ {Y (N−1),m}. (A.3)

This provides at the same time the definition of the fuzzy spherical harmonics Y lm, which

we normalize as

TrN

(
(Y lm)†Y l′m′

)
= δll

′
δmm

′
. (A.4)
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Furthermore, there is a natural SU(2) covariant differential calculus on the fuzzy sphere.

This calculus is three-dimensional, and the derivations of a function f along Xa are given

by ea(f) = [Xa, f ] . These are essentially the angular momentum operators

Jaf = ieaf = [iXa, f ], (A.5)

which satisfy the SU(2) Lie algebra relation

[Ja, Jb] = iεabcJc. (A.6)

In the N →∞ limit the derivations ea become ea = εabcxb∂c, and only in this commutative

limit the tangent space becomes two-dimensional. The exterior derivative is given by

df = [Xa, f ]θa (A.7)

where θa are defined to be the one-forms dual to the vector fields ea, < ea, θ
b >= δba. The

space of one-forms is generated by the θa’s in the sense that any one-form can be written

as ω =
∑3

a=1 ωaθ
a. The differential geometry on the product space Minkowski times fuzzy

sphere, M 4 × S2
N , is easily obtained from that on M 4 and on S2

N . For example a one-form

A defined on M 4 × S2
N is written as

A = Aµdy
µ +Aaθ

a (A.8)

with Aµ = Aµ(yµ, xa) and Aa = Aa(y
µ, xa).

For further developments see e.g. [30 – 32] and references therein.

B. Gauge theory on the fuzzy sphere

Here we briefly review the construction of YM gauge theory on S2
N as multi-matrix model [5,

21, 20]. Consider the action

S =
4π

N Tr
(
a2(φaφa + C2(N))2 +

1

g̃2
F †abFab

)
(B.1)

where φa = −φ†a is an antihermitian N ×N matrix, and define4

Fab = [φa, φb]− εabcφc . (B.2)

This action is invariant under the U(N ) “gauge” symmetry acting as

φa → U−1φaU.

A priori, we do not assume any underlying geometry, which arises dynamically. We claim

that it describes U(n) YM gauge theory on the fuzzy sphere S2
N , assuming that N = Nn.

To see this, we first note that the action is positive definite, with global minimum

S = 0 for the “vacuum” solution

φa = X(N)
a ⊗ 1ln (B.3)

4This can indeed be seen as components of the two-form F = dA+AA
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where Xa ≡ X
(N)
a are the generators of the N - dimensional irrep of SU(2). This is a first

indication that the model “dynamically generates” its own geometry, which is the fuzzy

sphere S2
N . In any case, it is natural to write a general field φa in the form

φa = Xa +Aa, (B.4)

and to consider Aa =
∑

αAa,α(x)Tα as functions Aa,α(x) = −Aa,α(x)† on the fuzzy sphere

S2
N , taking value in u(n) with generators Tα. The gauge transformation then takes the

form

Aa → U−1AaU + U−1[Xa, U ]

= U−1AaU − iU−1JaU, (B.5)

which is the transformation rule of a U(n) gauge field. The field strength becomes

Fab = [Xa, Ab]− [Xb, Aa] + [Aa, Ab]− εabcAc
= −iJaAb + iJbAa + [Aa, Ab]− εabcAc. (B.6)

This look like the field strength of a nonabelian U(n) gauge field, with the caveat that we

seem to have 3 degrees of freedom rather than 2. To solve this puzzle, consider again the

action, writing it in the form

S =
4π

N Tr
(
a2ϕ2 +

1

g̃2
F †abFab

)
, (B.7)

where we introduce the scalar field

ϕ := φaφa + C2(N) = XaAa +AaXa +AaAa. (B.8)

Since only configurations where ϕ and Fab are small will significantly contribute to the

action, it follows that

xaAa +Aaxa = O(
ϕ

N
) (B.9)

is small. This means that Aa is tangential in the (commutative) large N limit, and 2

tangential gauge degrees of freedom5 survive. Equivalently, one can use the scalar field

φ = Nϕ, which would acquire a mass of order N and decouple from the theory.

We have thus established that the matrix model (B.1) is indeed a fuzzy version of pure

U(n) YM theory on the sphere, in the sense that it reduces to the commutative model in

the large N limit. Without the term (φaφa + C2(N))2, the scalar field corresponding to

the radial component of Aa no longer decouples and leads to a different model.

The main message to be remembered is the fact that the matrix model (B.1) without

any further geometrical assumptions dynamically generates the space S 2
N , and the fluctua-

tions turn out to be gauge fields governed by a U(n) YM action. Furthermore, the vacuum

has no flat directions6, as we demonstrate explicitly in the following section.

5to recover the familiar form of gauge theory, one needs to rotate the components locally by π
2

using

the complex structure of S2. A more elegant way to establish the interpretation as YM action can be given

using differential forms on S2
N .

6the excitations turn out to be monopoles as expected [5], and fluxons similar as in [33]
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C. Stability of the vacuum

To establish stability of the vacua (2.16), (2.24) we should work out the spectrum of

excitations around this solution and check whether there are flat or unstable modes. This

is a formidable task in general, and we only consider the simplest case of the irreducible

vacuum (2.16) for the case b̃ = C2(N) and d = 0 here. Once we have established that all

fluctuation modes have strictly positive eigenvalues, the same will hold in a neighborhood

of this point in the moduli space of couplings (a, b, d, g̃, g6).

An intuitive way to see this is by noting that the potential V (φa) can be interpreted as

YM gauge theory on S2
N with gauge group U(n). Since the sphere is compact, we expect

that all fluctuations around the vacuum φa = X
(N)
a ⊗1ln have positive energy. We fix n = 1

for simplicity. Thus we write

φa = Xa +Aa(x) (C.1)

where Aa(x) is expanded into a suitable basis of harmonics of S2
N , which we should find.

It turns out that a convenient way of doing this is to consider the antihermitian 2N × 2N

matrix [5]

Φ = − i
2

+ φaσa = Φ0 +A (C.2)

which satisfies

Φ2 = φaφa −
1

4
+
i

2
εabcFbcσa. (C.3)

Thus Φ2 = −N2

4 for A = 0, and in general we have

S̃YM := Tr(Φ2 + b̃+
1

4
)2 = Tr

(
(φaφa + b̃)2 + F †abFab

)
. (C.4)

The following maps turn out to be useful:

D(f) := i{Φ0, f}, J (f) := [Φ0, f ] (C.5)

for any matrix f . The maps D and J satisfy

JD = DJ = i[Φ2
0, .], D2 − J 2 = −2{Φ2

0, .}, (C.6)

which for the vacuum under consideration become

JD = DJ = 0, D2 − J 2 = N2, J 3 = −N2 J . (C.7)

Note also that

J 2(f) = [φa, [φa, f ]] =: −∆f (C.8)

is the Laplacian, with eigenvalues ∆fl = l(l + 1)fl (for the vacuum).

It turns out that the following is a natural basis of fluctuation modes:

δΦ(1) = A(1)
a σa = D(f)− f,

δΦ(2) = A(2)
a σa = J 2(f ′)− J 2(f ′)0 = J 2(f ′) + ∆f ′

δΦ(g) = A(g)
a σa = J (f ′′) (C.9)
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for antihermitian N×N matrices f, f ′, f ′′, which will be expanded into orthonormal modes

f =
∑
fl,m Ylm. Using orthogonality it is enough to consider these modes separately, i.e.

f = fl = −f †l with Tr(f †l fl) = 1. One can show that these modes form a complete set of

fluctuations around Φ0 (for the vacuum). Here A(g) corresponds to gauge transformations,

which we will omit from now on. Using

Tr(fJ (g)) = −Tr(J (f)g), T r(fD(g)) = Trf(D(f)g) (C.10)

we can now compute the inner product matrix TrA(i)A(j):

Tr(A(1)A(1)) = Tr(((N 2 − 1)f −∆(f))g),

T r(A(1)A(2)) = Tr(∆(f)g),

T r(A(2)A(2)) = Tr((N 2∆(f)−∆2f))g). (C.11)

It is convenient to introduce the matrix of normalizations for the modes A(i),

Gij ≡ Tr((A(i))†A(j)) =

(
(N2 − 1)−∆, ∆

∆, N2∆−∆2

)
(C.12)

which is positive definite except for the zero mode l = 0 where A(2) is not defined.

We can now expand the action (B.1) up to second order in these fluctuations. Since

Fab = 0 and (φaφa + b̃) = 0 for the vacuum, we have7

δ2SYM = Tr
(
− 1

g̃2
δFabδFab + a2δ(φaφa)δ(φbφb)

)
. (C.13)

If a2 ≥ 1
g̃2 , this can be written as

δ2SYM = Tr
( 1

g̃2
(−δFabδFab + a2δ(φaφa)δ(φaφa)) + (a2 − 1

g̃2
)δ(φaφa)δ(φaφa)

)

= Tr
( 1

g̃2
δΦ2δΦ2 + (a2 − 1

g̃2
)δ(φaφa)δ(φaφa)

)
(C.14)

and similarly for a2 < 1
g̃2 . It is therefore enough to show that

δ2S̃YM = Tr(δΦ2δΦ2) = Tr(−δ(i)Fabδ
(j)Fab + δ(i)(φ · φ)δ(j)(φ · φ)) (C.15)

has a finite gap in the excitation spectrum. This spectrum can be computed efficiently as

follows: note first

δ(1)Φ2 = −iD2(f) + iD(f) = −iJ 2(f) + iD(f)− iN 2f,

δ(2)Φ2 = −iD(∆f),

δ(g)Φ2 = −iDJ (f) = [Φ2
0, f ] = 0 (C.16)

7Note that δTr(φ · φ) = 0 except for the zero mode A
(1)
0 with l = 0 where δ(1)Tr(φ · φ) 6= 0, as follows

from (C.16). This mode corresponds to fluctuations of the radius, which will be discussed separately.
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for the vacuum. One then finds

Tr(δ(1)(Φ2)δ(1)(Φ2)) = −Tr(f)((−(N 2 + 1)∆ + (N 2 − 1)N2)g),

T r(δ(1)(Φ2)δ(2)(Φ2)) = −Tr(f)(∆2)(g),

T r(δ(2)(Φ2)δ(2)(Φ2)) = −Tr(g)(−∆3 +N2∆2)g). (C.17)

Noting that the antihermitian modes satisfy Tr(flfl) = −1, this gives

δ2S̃YM =

(
−(N2 + 1)∆ +N 4 −N2, ∆2

∆2, −∆3 +N2∆2

)
= GT (C.18)

where the last equality defines T . The eigenvalues of T are found to be N 2 and ∆. These

eigenvalues coincide8 with the spectrum of the fluctuations of S̃YM . In particular, all modes

with l > 0 have positive mass. The l = 0 mode

A
(1)
0 = D(f0)− f0 = (2iΦ0 − 1)f0 = 2if0 σaφa (C.19)

requires special treatment, and corresponds precisely to the fluctuations of the normaliza-

tion α, i.e. the radius of the sphere. We have shown explicitly in (3.13) that this α = α(y)

has a positive mass. Therefore we conclude that all modes have positive mass, and there

is no flat or unstable direction. This establishes the stability of this vacuum.

The more general case b̃ = C2(N) + ε with α 6= 1 could be analyzed with the same

methods, which however will not be done in this paper. For the reducible vacuum (2.24)

or (2.26) the analysis is more complicated, and will not be carried out here.
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